2024 ㈜GU 교육일정

귀하를 모시고 신뢰성 시험 실무 세미나를 개최 하려고 합니다.

㈜GU에서는 현재 신뢰성시험 실무를 담당하고 계신 고객 뿐만 아니라 신뢰성시험 분야에 관심이 있으시거나 실무를 준비 하시는 분들을 위해 연간 교육 과정을 개설하고 있습니다.

많은 분들의 관심과 참여를 부탁 드립니다.

장소: 로드랜드EZ타워 507호 세미나실

주관 : ㈜GU

(주)GU 2024년 교육 일정

구분	번호	과정명 /과정소개	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월
이론 · 시험 · 시스템	1	진동시험의 기본 진동시험의 이론적 배경과 시험 방법, 시스템에 관한 이해	18 (목)						11 (목)					
	2	진동시험의 기본 및 실습 진동시험의 기본 과정, 시험 실무를 위한 하드웨어 및 소프트웨어 셋업 과정 실습				17(수) ~ 18(목)						16(수) ~ 17(목)		
	3	충격시험의 기본 충격시험의 이론적 배경과 시험 방법, 시스템에 관한 이해		15 (목)						22 (목)				
	4	패키지 및 배터리 신뢰성 시험 패키지, 배터리 진동/충격/낙하 시험 등 실무적인 신뢰성 시험에 관한 응용 교육			14 (목)						26 (목)			
계측 · 분석	5	비접촉 레이저 진동계를 이용한 진동 측정 및 분석 비접촉 레이저 진동계를 이용한 진동의 측정 분석, ODS 분석 등 첨단 진동 측정 분석 기법 소개	25 (목)						18 (목)					
	6	설비진동의 측정 및 분석 설비 미세 진동 충격의 측정 및 분석, 레이저 진동계 등 다양한 센서 및 계측장비 활용 방법 소개					2 (목)						14 (목)	
BSR	7	BSR의 이해 자동차 이음(Buzz, Squeak, Rattle)에 대한 이론 및 이음 방지 기법 이해						13 (목)						12 (목)
사용자 교육	8	진동시험시스템 사용자 교육 IMV (K2) IMV K2 진동컨트롤러 사용자 실무 교육		22 (목)						29 (목)				
	9	SAVER 사용자 교육 SAVER (진동·충격신호 기록장치) 사용자를 위한 실무 교육					23 (목)						21 (목)	

※ 세미나 교육시간

1. 진동시험의 기본 : 1일 (10:00~17:00 총 6시간)

2. 진동시험의 기본 및 실습 : 2일 (10:00~17:00 ×2 총 12시간)

3. 충격시험의 기본 : 1일 (10:00~17:00 총 6시간)

4. 패키지 및 배터리 신뢰성 시험 : 1일 (10:00~17:00 총 6시간)

5. 비접촉 레이저 진동계를 이용한 진동 측정 및 분석 : 1일 (10:00~17:00 총 6시간)

6. 설비진동의 측정 및 분석 : 1일 (10:00~17:00 총 6시간)

7. BSR의 이해 : 1일 (10:00~17:00 총 6시간)

8. 진동시험시스템 사용자 교육 IMV (K2) : 1일 (10:00~17:00 총 6시간)

※ 세미나 과정 상세 소개

1. 진동시험의 기본

진동이라는 물리 현상에 대해 이해하고, Swept sine test, Random vibration test와 같은 기본적인 진동시험 방법에 대한 지식을 소개하며, 진동시험 시스템의 종류와 동작 원리, 그리고 간단한 조작방법 등 진동시험 시스템을 이해하는 데 기본적인 지식을 제공합니다. 처음 진동시험을 접하시거나, 기초 지식과 무관하게 진동시험 업무를 담당하게 되신 분들에게 적합합니다.

2. 진동시험의 기본 및 실습

진동시험에 대한 이론적 배경 및 기본 지식을 교육하고, 진동시험 실무를 위해 필요한 하드웨어 셋업 및 소프트웨어 운용 등의 시연 실습이 포함된 교육 과정입니다. 진동 시험 기법에 대한 상세 설명과 시험의 셋업 방법을 교육하며, 각각의 운용 단계를 실습을 통해 직접 확인할 수 있습니다. 진동시험에 대해 보다심화된 교육이 필요하시거나, 실무적인 과정의 학습이 필요하신 시험 담당자분들에게 적합한 교육과정입니다.

3. 충격시험의 기본

충격 현상의 물리적 개념을 이해하고, 충격 시험 방법에 대한 기본 지식을 소개합니다. 충격시험시스템의 동작 원리와 조작 방법 등 충격시험시스템을 이해하는 데 기본적인 지식을 제공하며, 충격 시험의 실무를 담당하고 계시거나, 업무상 충격 시험과 관련된 지식이 필요하신 분들에게 적합합니다.

4. 패키지 및 배터리 신뢰성 시험

진동, 충격, 낙하 시험의 전반적인 이론과 패키지, 배터리 등의 신뢰성 시험에 관한 교육 내용으로 구성되며, 시험 규격, 시험 방법 및 시험 장비에 대하여 소개하는 교육 과정입니다. 패키지, 배터리의 신뢰성 시험 실무를 담당하고 계신 분들에게 적합합니다.

5. 비접촉 레이저 진동계를 이용한 진동 측정 및 분석

진동 신호 측정 및 분석 방법에 대한 기본 지식을 소개하며, 계측 시스템의 기본적인 원리 및 구성에 대해소개합니다. 비접촉 레이저 진동계를 활용한 진동 측정 분석 실무 및 스캐닝 레이저 진동계를 이용한 3차원 ODS 측정 분석 실무 등 첨단 진동 측정 분석 기법을 소개하고 실제 측정 및 분석 과정을 시연합니다.

6. 설비진동의 측정 및 분석

반도체 라인 등 각종 생산 설비에서 발생하는 미세 진동 및 충격을 측정하고 분석하는 방법에 대해 소개합니다. 레이저 진동계를 포함한 다양한 진동 측정 센서 및 계측 장비를 이용한 측정 방법 그리고 분석 과정을 소개하고 실제 장비를 운용하여 시연합니다.

7. BSR의 이해

차량의 이음(Buzz, Squeak, Rattle) 발생 원리 및 이론적 지식을 소개하며, BSR 검출과 예방을 위한 시험 방법, 그리고 이음 발생의 예방 및 저감을 위한 기술적 접근 방식에 대해 교육합니다.

8. 진동시험시스템 사용자 교육

현재 진동시험 업무를 담당하고 계신 분들을 위한 교육 과정으로서, 진동시험 시스템에 대한 이해 및 사용 방법, 시험 조건에 따른 소프트웨어의 설정 및 사용 방법 등을 소개합니다. 진동시험 실무를 현재 담당하고 계시거나, 향후 진동 실무를 담당하게 되실 분들에게 적합한 과정입니다. 본 과정은 IMV사의 K2 진동 컨트롤러를 사용하시는 분들을 대상으로 진행됩니다.

9. SAVER 사용자 교육

Lansmont사의 운송환경 기록계인 SAVER 사용자를 위한 교육 과정입니다. 제품의 운송 과정에서 발생하는 진동, 충격, 낙하 및 온습도 환경의 측정 조건 및 방법을 소개합니다. 포장재의 평가나 개발, 패키지의 신뢰성 평가를 담당하고 계신 분들에게 적합한 교육 과정입니다.